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Edmond Halley. Leonhard Euler. Mason and Dixon (of "line" fame). Captain James 
Cook. James Short. 

With the probable exception of the last man listed, these names are all very rec- 
ognizable, yet it seems most unusual for them to appear together. What could they 
possibly have in common? 

The answer, of course, is given away in the title of this article. All were players in 
the extraordinary story surrounding observations of the transits of Venus-that is, the 
passages of Venus across the disk of the Sun, as viewed from Earth-that took place in 
the eighteenth century. Only five transits of Venus are known to have been observed in 
the history of mankind, in 1639, 1761, 1769, 1874, and 1882. Thus no one alive today 
has seen one. But this will soon change, for the next transit will take place June 8, 
2004, and another will follow on June 6, 2012. 

Though transits of Venus are rare and beautiful astronomical events, they could not 
have earned a significant place in the history of science for aesthetic reasons alone. 
The extraordinary attention devoted to these transits, especially in 1761 and 1769, 
was due to their usefulness in determining the length of the astronomical unit, that is, 
the mean distance from Earth to the Sun, in terms of terrestrial distance units such as 
miles. Indeed, one estimate of the astronomical unit, computed from observations of 
the 1769 transit and published in 1771, differs from modem radar-based values by a 
mere eight-tenths of a percent [5, 9]. 

The first purpose of this article is to offer a glimpse into the rich history surrounding 
observations of the transits of Venus, especially the transit of 1761. But a second and 
more important purpose is to give a mathematical description of the methods used by 
Mr. James Short following the 1761 transit to deduce the length of the astronomical 
unit. As June 8, 2004 draws near, one is sure to read of the upcoming transit in the 
popular press. This article is intended to augment the popular accounts by providing 
mathematical insight into the event for those who are able to appreciate it. 

Kepler's prediction and the first observed transits 

Our story starts with the German astronomer Johannes Kepler in the early part of the 
seventeenth century. Though Kepler never witnessed a transit himself, his significance 
in the story is enormous for two reasons. 

First, according to Kepler's Third Law, as it is now known, the ratio of the square of 
a planet's orbital period to the cube of its mean distance from the Sun is the same for all 
planets. From this law, the relative scale of the solar system can be determined simply 
by observing the orbital periods of the planets. In fact, Kepler's own estimates of the 
relative distances of the known planets from the Sun do not differ significantly from 
modem values. But Kepler was unable to translate his discovery of the relative scale 
of the solar system into absolute terms, for he badly underestimated the length of the 
astronomical unit. His estimate of 3469 Earth radii (actually the largest of several of 
his estimates) was roughly seven times too small, and so his understanding of absolute 
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distances within the solar system remained considerably flawed [13]. Despite Kepler's 
naive estimate of the solar distance, his third law remains one of the great achievements 
in the history of science, and is unquestionably fundamental to understanding the size 
of the solar system. 

The second connection between Kepler and the transit problem is much more di- 
rect. It was his prediction in 1629 of the transits of Mercury, in November of 1631, 
and Venus, in December of 1631, that led to the first-ever observations of such events. 
Kepler predicted that the Venus transit would not be visible in Europe, nevertheless he 
asked astronomers to keep watch on the 6th and 7th of December in case his calcula- 
tions were imperfect. He also "directed his request to observe this transit... to sailors 
who would be on the high seas, and learned men in America..." [13]. Unfortunately, 
there is no evidence that anyone successfully observed the 1631 Venus transit. On 
the other hand, at least three people saw the transit of Mercury in 1631 as a result of 
Kepler's prediction. Of these, Pierre Gassendi wrote a detailed account of the event. 
Though no attempt was made to use this transit to determine the length of the astro- 
nomical unit, Gassendi's observation was significant nonetheless, for it revealed that 
the apparent diameter of Mercury was far smaller than had been assumed by Kepler 
and his contemporaries [7]. Kepler, unfortunately, died on November 15, 1630, and 
thus did not live to see his brilliant prediction fulfilled. 

Kepler's transit predictions were based on his Rudolphine Tables of 1627, which 
were produced as a result of his work with the great Danish astronomer Tycho Brahe. 
By the same method, Kepler also predicted the 1761 transit of Venus, but imperfec- 
tions in the tables led him to believe that no transit would take place in 1639. Following 
Kepler's death, the Belgian astronomer Philip van Lansberg produced a set of tables, 
now known to be considerably inferior to Kepler's, but which did in fact predict a 
transit in 1639. It was in trying to reconcile differences between Lansberg's tables 
and the Rudolphine Tables that a brilliant young Englishman, Mr. Jeremiah Horrox, 
became convinced that a Venus transit would indeed occur in 1639 [15]. Regarding 
Lansberg's tables, Horrox wrote [14], "I pardon, in the meantime, the miserable ar- 
rogance of the Belgian astronomer, who has overloaded his useless tables with such 
unmerited praise... deeming it a sufficient reward that I was thereby led to consider 
and forsee the appearance of Venus in the Sun." 

Horrox was richly rewarded for his labors in correcting the Rudolphine Tables, for 
on December 4, 1639, he became one of the first two people ever to observe a transit 
of Venus. The event was also observed at a nearby location by his friend William 
Crabtree, whom Horrox had alerted in the weeks preceding the event. No attempt was 
made by Horrox to use the Venus transit to determine the solar distance, but as with 
Gassendi's observations of Mercury in 1631, the event served to show that the angular 
size of Venus was far smaller than had been assumed [13]. 

Solar parallax 

We now pause to present a few technical terms that are essential for the development 
of the story, using the terminology found in Taff [12]. In FIGURE 1, a is the angle 
between the line through the centers of the Earth and Sun and a line through the center 
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Figure 1 The equatorial horizontal solar parallax a 



of the Sun and tangent to the Earth's surface. The angle a is known as the horizontal 
solar parallax. Denoting the Earth's equatorial radius by re and the Earth-Sun distance 
by A, it is clear from FIGURE 1 that a = sin- (re/A). But of course A is not constant! 
If A is chosen to be one astronomical unit (au), the mean distance from Earth to the 
Sun, then a is known as the mean equatorial horizontal solar parallax. For brevity, 
the term solar parallax is commonly used in place of mean equatorial horizontal solar 
parallax, with further distinctions made only when the context requires it. With the 

preceding definitions and the understanding that re is known, it should be clear that the 
problem of finding the length of the astronomical unit in terms of terrestrial units is 

equivalent to determining the solar parallax a. Finally, to properly prepare the reader 
for the discussion that follows, we note that a modem value for the solar parallax is 
8.794148" [12], where a minute (') is the sixtieth part of a degree and a second (") 
is the sixtieth part of a minute. We also point out that smaller estimates of the solar 
parallax correspond to larger estimates of the astronomical unit, as expressed in miles 
(or kilometers, or Earth radii, or...). 

Kepler's Earth-Sun distance of 3469 Earth radii corresponds to a solar parallax of 
about one minute. Through the course of the seventeenth century, estimates of the so- 
lar parallax continued to diminish, due in large part to a vast increase in the quality 
and quantity of telescopic observations of the planets. By the end of the century, lead- 
ing astronomers had all begun to believe that the solar parallax was considerably less 
than one minute, though there was little uniformity and often less than compelling rea- 
soning behind the variety of values that continued to appear in scholarly works. The 
uncertainty' that remained early in the eighteenth century is nicely illustrated in van 
Helden's Measuring the Universe [13], where we find that no less an authority than 
Newton was still undecided about the solar parallax: In the second edition of the Prin- 
cipia (1713), he used 10"; in notes for the third edition he variously used 11", 12", and 

13", and in the third edition itself one finds a solar parallax of 10? . 

Edmond Halley's call for action: an international scientific effort 

Though the idea of using a transit of Venus or Mercury to determine the solar paral- 
lax dates back at least to the Scottish mathematician James Gregory in 1663, it was 
Edmond Halley who became its greatest advocate. Halley observed a transit of Mer- 
cury from the southern hemisphere in 1677, and in his report on the observations, he 
discussed the possibility of using transits of Mercury or Venus to determine the solar 
parallax. Of the two, he believed that the geometry of Venus transits was far more 
likely to produce accurate results. Halley proposed the Venus transit idea in papers 
presented to the Royal Society in 1691, 1694, and most importantly, in 1716. Because 
Halley was one of the most influential astronomers of his time (he became the second 
Astronomer Royal in 1719), his paper of 1716 became "a clarion call for scientists 
everywhere to prepare for the rare opportunity presented by the forthcoming transits 
of 1761 and 1769." [15] 

Halley's 1716 paper [4] begins by lamenting the wide variety of solar parallax val- 
ues in use at the time, some as large as 15", and suggests 122 as a plausible value. 
He goes on to describe roughly his method of determining the solar parallax from ob- 
servations of the transit of Venus that would take place in 1761, even going so far as 
to describe the proper locations to send observers. "Therefore again and again," writes 
Halley, "I recommend it to the curious strenuously to apply themselves to this observa- 
tion. By this means, the Sun's parallax may be discovered, to within its five hundredth 

part..." The essence of his method was to calculate, based on the 122" hypothesis, 
the expected difference in the duration of the transit as observed at two widely differ- 
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ing locations. "And if this difference be found to be greater or less by observation, the 
Sun's parallax will be greater or less nearly in the same ratio." As we shall see, this was 
exactly the idea behind the methods employed by James Short when the transit actu- 
ally took place. But despite the claim by Acker and Jaschek [1] that "this method was 
used by Halley in 1761 and 1769," Halley had no illusions that he would personally 
put his method into practice, for he died in 1742 at the age of 85. 

Halley's paper called for observers to be stationed far and wide across the globe, 
a monumental task in 1761. Despite the obvious difficulties involved in sending ob- 
servers to distant locations, not to mention the fact that Great Britain and France were 
in the midst of the Seven Years' War at the time, the response to his call was over- 
whelming. In all, when the transit took place, there were at least 122 observers at 
sixty-two separate stations, from Calcutta to the Siberian city of Tobolsk, from the 
Cape of Good Hope to St. John's in Newfoundland, and of course, at a large num- 
ber of locations throughout Europe [15]. Many had traveled weeks or even months to 
reach their destinations. Unfortunately, it is impossible to describe in this short article 
all the adventures of those who set out to observe the 1761 transit: of Charles Mason 
and Jeremiah Dixon who set out for the East Indies, but hadn't so much as left the En- 
glish channel when their ship was attacked by a French warship, leaving 11 dead and 
37 wounded; of the Frenchman Chappe who traveled 1500 miles across Russia to To- 
bolsk by horse-drawn sleigh, once having to round up his deserting guides at gunpoint; 
of the Frenchman Le Gentil who was prevented by the war from reaching his destina- 
tion in India, and so was forced to observe the transit from the rolling deck of a ship 
in the Indian Ocean. The interested reader will find excellent descriptions of these and 
other expeditions in Harry Woolf's book on the eighteenth-century transits of Venus 
[15]. All in all, the efforts to observe the 1761 transit of Venus surely amounted to the 
greatest international scientific collaboration in history up to that time. 

James Short and his computation of the solar parallax 

James Short (1710-1768) is not well known in moder mathematical circles for the 
simple reason that he was not primarily a mathematician. Though Short studied under 
Colin Maclaurin and displayed some talent in mathematics, he achieved fame and 
fortune as one of the most skilled telescope makers of the eighteenth century. In his 
lifetime, Short made some 1,370 telescopes, of which 110 still exist today [3]. A 
"Short biography" might also mention that he was a candidate for the post of As- 
tronomer Royal, a frequent contributor to the Philosophical Transactions of the Royal 
Society, a friend of Benjamin Franklin, and a co-discoverer of a nonexistent moon of 
Venus [3, 6]. Short was a member of a special committee established by the Royal 
Society to plan the study of the 1769 transit of Venus, but died before the plan could 
be implemented. 

Short observed the 1761 transit of Venus from London, in the company of the Duke 
of York and other honored guests. In the months following the transit, Short collected 
a good deal of data from the various observations that had taken place worldwide. 
These he published in the Philosophical Transactions in December 1761, in a paper 
entitled The Observations of the internal Contact of Venus with the Sun's Limb, in 
the late Transit, made in different Places of Europe, compared with the Time of the 
Same Contact observed at the Cape of Good Hope, and the Parallax of the Sun from 
thence determined [10]. A second article [11], virtually identical in nature but with 
a great deal more data, appeared a year later in an attempt to strengthen the case for 
his computed solar parallax value. We shall now examine the methods Short used, as 
described in the 1761 paper. 
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Figure 2 Contacts at ingress and egress 

FIGURE 2 illustrates the positions of Venus on the disk of the Sun at four cru- 
cial times during the transit. Times tl, t2, t3, and t4 are the times of external contact 
at ingress, internal contact at ingress, internal contact at egress, and external con- 
tact at egress, respectively. Next, in FIGURE 3, one can see that the track of Venus 
across the Sun shifts upward as the observer moves further south on the surface of 
the Earth. This upward shift has two consequences that are crucial to Short's com- 
putational plans: first, the t3 time is earlier for northern observers than for southern 
observers, and second, the total duration of the transit t3 - t2 is shorter for northern 
observers than for southern observers. Short's two methods simply amount to quanti- 
fying these two ideas. 

N 

Sun 
s I I''' Sun 

Earth Venus 

Track seen by ... 
...northern observer 

...southern observer 

Figure 3 Effect of latitude on the apparent track of Venus 

We can easily illustrate Short's first method just as he presents it in his first paper, 
that is, with virtually no computational details whatsoever! First, we note that the t3 
time observed in Greenwich was 8:19:00 AM local time, whereas the t3 time as ob- 
served at the Cape of Good Hope was 9:39:50 local time. (In fact, it was Mason and 
Dixon who provided the valuable observations from the Cape, having been prevented 
from reaching the East Indies by their skirmish with the French warship.) The differ- 
ence is 1h 20' 50". Now most of this difference is due to the difference in local times, 
which Short determines to be 1h 13' 35". Since one hour of local time difference cor- 
responds to 15? of longitude, Short's figure is equivalent to saying that the Cape's 
longitude is 18023'45" east of Greenwich. But after the difference in local times is ac- 
counted for, a time difference of 7' 15" remains, which must be the difference due to 
the effect of latitude illustrated in FIGURE 3. 

Next, Short asserts a theoretical difference to compare with this observed difference 
of 7' 15". Assuming a solar parallax of 8.5" on the day of the transit, the t3 time for an 
observer at the Cape should be 6' 8" later than the t3 time for a hypothetical observer 
at the center of the Earth, and the t3 timefor an observer at Greenwich should be 1' 11" 
earlier. Thus the 8.5" hypothesis leads to a difference of 7' 19" between the t3 times 
predicted for these two stations. "But the difference in absolute time," Short writes, 



"as found by observation, as above, is only = 7' 15", therefore the Sun's parallax, by 
supposition, viz. 8.5", is to the parallax of the Sun found by observation, as 7' 19" is 
to 7' 15", which gives 8.42" for the Sun's parallax, on the day of the transit, by this 
observation..." In other words, after converting times to seconds, Short has solved 
the proportion 

8.5 439 
(1) 

a 435' 

much as Halley had suggested. 
In an identical manner, Short compares observations from fourteen other locations 

to those taken at the Cape, and concludes that "by taking a mean of the results of 
these fifteen observations, the parallax of the Sun, on the day of the transit, comes out 
= 8.47", and by rejecting the 2d, the 8th, the 12th, and the 14th results, which differ 
the most from the rest, the Sun's parallax, on the day of the transit, by the mean of 
the eleven remaining ones is = 8.52"." He then uses this value to compute the mean 
equatorial horizontal solar parallax, which can be accomplished as follows. First, recall 
from FIGURE 1 that the radius of the Earth, which is of course constant, is A sin a. If A, 
is the Earth-Sun distance (in au) on the day of the transit and am is the mean equatorial 
horizontal solar parallax (which corresponds to an Earth-Sun distance of A = 1 au), 
then 

At sin 8.52" = sinam. 

Clearly, Short knew that A, - 1.015 au, allowing him to compute am, for he writes 
"The parallax of the Sun being thus found, by the observations of the internal contact at 
the egress, = 8.52" on the day of the transit, the mean (equatorial) horizontal parallax 
of the Sun is = 8.65"." Thus the solar parallax computation is complete. The length of 
the astronomical unit in miles is now simply re/sin 8.65", where re is the radius of the 
Earth in miles. 

But there is a gaping hole in our understanding of Short's method. To complete 
our understanding, we must develop a way to determine the 6' 8" and 1' 11" time val- 
ues noted above (and similar values for other observer locations), which arise from 
the hypothesis of an 8.5" solar parallax on the day of the transit. We shall approach 
the problem in a manner that is undoubtedly different from what Short used in 1761, 
preferring to use the tools of vector and matrix algebra that are so familiar to us. 

Our first task is to develop two coordinate systems and relate them to one another. 
FIGURE 4 shows the geocentric equatorial coordinate system x'y'z' whose origin is 
at the center of the Earth. The x'y' plane contains the Earth's equator, and the z' axis 
passes through the north pole. The positive x' axis is oriented so that it passes through 
the center of the Sun on the first day of spring, and is fixed in space; that is, the Earth's 
daily motion and annual motion do not change the orientation, but only the location of 
the origin. Thus the angle 0 in FIGURE 4 changes continuously as the Earth rotates. 

Now consider an observer at longitude X and latitude B, measured with the con- 
vention that -180? <X < 180? and -90? < , < 90?, with . > 0 east of Greenwich 
and 0 > 0 north of the equator. If 0 represents the angular position of Greenwich with 
respect to the x' axis at a particular instant, then an observer at longitude X and latitude 
B will have x'y'z' coordinates 

x' re cos C cos(O + X) 

y/ = re cos sin(0 +X) . (2) 
z'f re sin 6 
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Figure 4 Geocentric equatorial coordinates 

This is just the usual spherical-to-rectangular coordinate conversion, with the observa- 
tion that latitudes are measured up from the equator rather than down from the north 
pole, as is standard in calculus texts. 

Earth on first 
Iz day of spring 

Earth at I ./ Earth at !I e I 

x 
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z 
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Figure 5 Geocentric equatorial and heliocentric Venus transit coordinates 

FIGURE 5 shows the x'y'z' coordinate system along with a second system xyz that 
we shall call the heliocentric Venus transit coordinate system. The xyz coordinate 
system is chosen with the origin at the center of the Sun, the xy plane containing 
the Earth's orbit, and the positive x axis directed through the center of the Earth at 
midtransit as viewedfrom the center of the Earth. The xy plane is known as the ecliptic 
plane. 

Converting from one coordinate system to the other is accomplished as follows: 
first, a rotation about the x' axis through the angle E (the tilt of the Earth's axis with 
respect to the ecliptic plane) makes the x'y' plane coincide with the xy plane; next, a 
rotation about the z' axis (now pointing in the same direction as the z axis) through 
an angle of 0 makes the x' axis coincide with the x axis; finally, the x'y'z' coordinate 

VOL. 76, NO. 5, DECEMBER 2003 341 

1% 
11. 

N 



342 MATHEMATICS MAGAZINE 

system is translated one unit in the positive x direction. The angle / represents the 
Earth's position with respect to the Sun at midtransit June 6, 1761, and placing the 
center of the Earth exactly one unit from the center of the Sun at midtransit is simply 
a computational convenience. (This distance unit, which we shall use to measure all 
distances in the following discussion, is approximately one astronomical unit, but not 
exactly so because the Earth is not at its mean distance from the Sun on June 6.) The 
rotations and translation are accomplished via 

y -sin cos 0 0 cosE sin y' + . 
z 0 0 1 0 -sine cose z' 0 

(3) 
The Earth's daily motion and annual motion must be accounted for as time elapses 

from t = 0, the moment of midtransit (as viewed from the center of the Earth). For 
the former, we increase 0 in (2) according to 0 = 00 + 15t (degrees), where 00 is the 
position of Greenwich (with respect to the positive x' axis) at t = 0 and t is measured 
in hours. Of course the 15 arises from the fact that the Earth rotates 15? per hour. We 
shall approximate the Earth's annual motion for the short duration of the transit by 
assuming that it takes place entirely in the positive y direction. Denoting the Earth's 
angular velocity at the time of the transit by wc, the displacement at time t due to the 
Earth's annual motion is approximated by [0, oet, O]T. By adding this displacement to 
the right side of (3) and by using (2) to determine [x', y', z']T, we can determine the 
xyz coordinates at time t of an observer at longitude X and latitude f. 

The essence of our method is to derive vector equations based on the simple obser- 
vation that the center of the Earth, the center of Venus, and the center of Venus's image 
on the Sun (as viewed from the center of the Earth) must be collinear. We shall then re- 
peat the computation, replacing the center of the Earth with the position of an observer 
on the surface of the Earth. FIGURE 6 shows the track of Venus's image across the disk 
of the Sun, as viewed from the center of the Earth. At t = 0 (midtransit), the center of 
Venus's image on the Sun (in xyz coordinates) is at Io = [0, d cos u, d sin u]T, where d 
and u will be computed from observations. The center of the Earth is at Eo = [1, 0, O]T. 
Assuming that, for the short duration of the transit, the motion of Venus takes place in 
the plane x = xv, simple vector addition shows that the position of the center of Venus 
at time t = 0 is Vo = Io + xv(Eo - Io). 

z 

d A 

c< "ri (radius of image) 

Figure 6 Track of Venus's image on the disk of the Sun 

FIGURE 6 shows that at time t = T (the moment of internal contact at egress 
as viewed from the center of the Earth), the center of Venus's image is at IT = 

[0, R cos(u + v), R sin(u + v)]T. Meanwhile, the center of the Earth has moved to 
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Figure 7 Motion of Venus in the plane x = x, 

ET = [1, ceT, 0]T. In FIGURE 7, which shows the motion of Venus from t = 0 to 
t = T, the angle i is the inclination of Venus's orbit to the xy plane. If wo is the 
angular velocity of Venus, then the distance the planet travels from t = 0 to t = T is 
approximated by x wo T, so that its location at time T is 

0 O 

VT = Vo + x,w,T cosi . (4) 
- sin i 

The vector VT - IT must be a constant multiple of the vector ET - IT in order for 
the center of the Earth, the center of Venus, and the center of Venus's image on the 
Sun to be collinear, and the first coordinates tell us that the constant is xv. By equat- 
ing the second coordinates in the vector equation VT - IT = XV(ET - IT), expanding 
cos(u + v) and simplifying, we are able to obtain 

X (We - cov cos i) 
sinu = ( )VC T. (5) 

(1 -x v/2 -d2 

Likewise, equating the third coordinates, expanding sin(u + v) and simplifying, we 
get 

x,vW sini 
cos u =- n T. (6) 

(1 - xv)v/R2 -d2 

The identity sin2 u + cos2 u = 1 allows us to obtain 

T (-xv)+ R2 - d 
T= Xv V) 2 + - 2 OvWe cos i (7) 

Once T is known, equations (5) and (6) allow us to determine sin u and cos u. 
Next we repeat the computation for a viewer on the Earth's surface at longitude X 

and latitude P. Let t = To be the time at which our observer sees the internal contact 
at egress, where once again t = 0 refers to the moment of midtransit as seen from the 
center of the Earth. Let ITO = [0, Yc, Zc]T designate the center of the image as seen by 
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the observer at time t = To, and note that y2 + Z = R2. As noted in the paaraph 
following (3), the observer's position at t = To is 

OT = ( + o( , 

where the vector [x, y, z]T is exactly as given in (3). By changing T to To in (4), we 
obtain the position of the center of Venus at time t = To, that is 

/ O 

VTO = Vo + XVWVTO cos i 
- sin i 

As before, the vector VTO - ITO is a constant multiple of the vector OTO - ITO, and the 
first coordinates force the constant to be x/,x. Equating the second coordinates gives 
us Yc = M + NTo, where 

(1 - xv)xd cos u - x,y xand N = XX i - XvDe M = and N = , 

X -X X -Xv 

and equating the third coordinates gives us Zc = P - QTo, where 

(1- xv)xd sin u - xz an Q XXCv sin i 
P= and Q = 

X - X X - xv 

Then y2 + 2 = R2 becomes (M + NTo)2 + (P- QTo)2 = R2, which can easily be 
solved for To. (The + sign in the quadratic formula gives the correct root.) 

Our observer at longitude X and latitude P should see the internal contact at egress 
To - T hours later than a hypothetical observer at the center of the Earth, assuming 
the difference is positive, and ITo - TI hours earlier if the difference is negative. To 
illustrate, we restate the values given previously: for an observer at the Cape of Good 
Hope, To - T = 0.10222 hours, or 6' 8" later, whereas for an observer at Greenwich, 
To - T = -0.01972 hours, or 1' 11" earlier. 

We now address the problem of determining values for the many parameters that 
have been introduced into our work. There are three sources for values of these param- 
eters: First, Short specifically lists a few of the values that he uses; second, and most 
importantly, many of the values can be computed from Short's values using the un- 
derlying hypothesis that the solar parallax is 8.5" on the day of the transit; third, there 
are a few values related to the Earth's daily and annual motions that Short undoubt- 
edly knew, but did not specify. For these last-mentioned values, we resort to moder 
sources that readily supply the necessary information. In all cases, we shall use Short's 
values for the latitudes and longitudes of the observers as given in Short's first paper, 
for accurate determination of the longitude was a significant problem in 1761, and the 
use of moder values would seriously affect the results. In using Short's longitude val- 
ues, one must be careful to note that not all are measured with respect to Greenwich, a 
standard that evolved sometime after 1761. 

Let us reiterate that our coordinate system is chosen so that the centers of the Earth 
and Sun are exactly one unit apart at midtransit, as seen from the center of the Earth. 
All distances in the following work will be measured in terms of this unit. Under the 
8.5" hypothesis, the radius of the Earth is therefore re = sin 8.5". Short gives the dif- 
ference in the parallaxes of Venus and the Sun as 21.35" on the day of the transit, so 
we may take 29.85" as the parallax of Venus. Therefore the Venus-to-Earth distance 
is given by re/sin 29.85" = sin 8.5"/sin 29.85", so that x, = 1 - sin 8.5"/sin 29.85". 

344 MATHEMATICS MAGAZINE 



VOL. 76, NO. 5, DECEMBER 2003 345 

Sun 

31'31" 5"Image 
of 

Venus on Sun 
2 \Venus 

1 SunyA 
r 

Figure 8 The radii of the Sun and the image of Venus from their angular diameters 

Next, Short's value of 31' 31" for the angular diameter of the Sun on the day of the ob- 
servation gives us a value for the solar radius R = sin(31'31"/2); likewise his value of 
59" for the angular diameter of Venus gives us the value ri = tan(59"/2) (see FIGURES 
6 and 8). Thus R = R - ri is known. Short also gives the minimum angular separation 
of the centers of Venus and the Sun as 9' 32", as seen from the center of the Earth. This 
figure, based on the actual transit observation, gives us d = tan(9'32"). And last, Short 
gives us two values regarding the motion of Venus, the first of which is co, = 3' 59.8" 
of arc per hour. The second is i, the inclination of Venus's orbit with respect to the 
plane of the Earth's orbit. The value published in Short's paper [10] is i = 8? 30' 10", 
a value that is surely the result of a typesetting error. For this value produces nonsen- 
sical results, whereas the value i = 3? 30' 10" not only agrees well with the modem 
value [9] but produces results that match Short's quite well. It is inconceivable that the 
best data available in 1761 had a 5? error in the inclination. 

For the parameters that Short omits from his paper, modem references by Mon- 
tenbruck and Pfleger [8] and Roy [9] provide us with the appropriate 1761 values. For 
the Earth's daily and annual motions, we have used E = 23.47?, f = 256?, 00 = -25?, 
and We = 2' 25.0" per hour. To obtain 0 from 00, we have assumed the constant t value 
of 3 hours, which approximates the semi-transit time and which therefore allows us to 
determine the observer's xyz coordinates at the moment of internal contact at egress. 
Computational experience suggests that the calculations are quite sensitive to changes 
in we, but much less so for E, 0, and 0. 

The lack of certainty as to the exact values James Short used for i, E, 0, 00, and We, 
the sensitivity of the computations to We, and our rather different method of computing 
the To - T values make it impossible to match Short's values exactly. But the results 
are consistently close, differing from Short's by roughly 1%. Thus the To - T value 
for the Cape of Good Hope, computed by the above method, is 6' 12", compared to 
Short's value of 6' 8". The table below lists data for four other locations, the last being 
a location in present day Finland. The second column shows our computed To - T 
value followed by Short's value in parentheses. The third column is the difference 
between the Cape and the given location, again with Short's value in parentheses. The 
fourth column shows the difference in time of internal contact at egress between the 
given location and the Cape, as actually reported by the observers. The last column 
shows the resulting solar parallax on the day of the transit computed as in (1), with 
Short's value in parentheses. 

Location T- T Diff. from Cape Observed Parallax 

Greenwich -1' 12" (-'11") 724" (7' 19") 7' 15" 8.33" (8.42") 
Rome -0' 14" (-0' 13") 6' 26" (6' 21") 6' 26" 8.50" (8.61") 
Stockholm -2' 20" (-2' 18") 8' 32" (8' 26") 8' 25" 8.38" (8.48") 
Cajaneburg -3' 1" (-2' 59") 9' 13" (9' 7") 8' 56" 8.24" (8.33") 
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For further comparison, we note that Short's computed values for the solar parallax on 
the day of the transit fall between 8.07" and 8.86", based on data from the fifteen sites 
studied in his first paper [10]. 

Short's second method 

Short's second method for computing the solar parallax is really just a small variation 
on the first method, and so it will be very easy for us to describe. This method com- 
pares the observed duration of the transit, that is, the time between internal contact 
at ingress and internal contact at egress, to the theoretical duration of the transit com- 
puted from the 8.5" hypothesis. In the notation of the previous section, the theoretical 
duration for an observer at the center of the Earth is simply 2T, which can readily be 
computed from (7). By this method, the duration is 5h 57' 59", whereas Short gives 
the value 5h 58' 1". For an observer on the surface of the Earth, one can compute a 
theoretical duration from the 8.5" hypothesis as follows. First, compute To (the time 
between midtransit and internal contact at egress) just as before. Next, by evaluating 
0 = 00 + 15t at t = -3 instead of t = 3, and by using the - sign in the quadratic for- 
mula used to determine To, we obtain the time before midtransit at which the internal 
contact at ingress should occur. Subtracting this (negative) value from the original To 
value gives us the theoretical duration of the transit for our observer. We can then use a 
proportion much like (1) to reconcile the actual observed duration with this theoretical 
duration. 

For example, Short's theoretical duration for Tobolsk is 5h 48' 58", which differs 
from his center-of-the-Earth duration by 9' 3" or 543 seconds. But the observed dura- 
tion at Tobolsk was 5h 48' 50", which differs from his center-of-the-Earth duration by 
9' 11" or 551 seconds. Then 

8.5 center-of-Earth - theoretical 543 

a center-of-Earth - observed 551' 

yielding a solar parallax of 8.63" on the day of the transit. To illustrate further, our 
theoretical duration for Cajaneburg is 5h 49' 54", Short's is 5h 49' 56", and the observed 
duration was 5h 49' 54". For Stockholm, our theoretical value is 5h 50' 27", Short's is 
5h 50' 27", and the two reported observations are 5h 50' 45" and 5h 50' 42". 

Short uses this second method to compute the solar parallax on the day of the transit 
using data from sixteen different observers. He thus obtains sixteen values ranging 
from 8.03" to 8.98", with a mean of 8.48". In a manner that modern statisticians can 
only envy for its simplicity, he concludes that "if we reject the observations of number 
7th, 8th, 9th, 10th, 12th, 13th, and 14th, which differ the most from the rest, the mean 
of the nine remaining ones gives the Sun's parallax = 8.55", agreeing, to a surprising 
exactness, with that found by the observations of the internal contact at the egress." If 
half of the data doesn't support your conclusion, just use the other half! 

The transit of 1769 and conclusions 

The reader may have sensed by now that the transit of 1761 did not produce the defini- 
tive result that Halley had predicted in his 1716 paper. Despite the cleverness of the 
method and the extraordinary efforts that had gone into making the observations, the 
conclusions that were drawn from the data still varied widely, with much of the un- 
certainty due to the lack of accurate longitude data [15]. But the experience gained 
in 1761 only served to whet the appetites and improve the skills of those who would 
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follow in 1769, when an equally vast international effort was undertaken to observe 
the second Venus transit of the decade. Captain James Cook was hired to transport 
observers to the South Pacific, and our friend Chappe (of Tobolsk in Siberia) observed 
the transit from Baja California, where he died soon thereafter. The luckless Le Gentil, 
who missed the 1761 transit as a result of the war, waited eight years in the Indian 
Ocean area for the 1769 transit, only to be defeated by cloudy weather. And how does 
Euler fit into the story? He certainly did not witness the 1769 transit, for by then he was 
totally blind, but this did not stop him from writing about it [2]. Other than these few 
items of trivia, we shall not go into the 1769 transit in any detail, for the mathematics 
did not change significantly from the work already described. 

The range of solar parallax values derived from the 1769 transit, and thus the length 
of the astronomical unit, drew ever closer to the values accepted today. We close by 
providing the details of a comparison that was mentioned in the introduction: a moder 
radar-based value for the astronomical unit is 92,955,000 miles [9]. And based on his 
analysis of the 1769 transit of Venus, Thomas Horsby [5] wrote in 1771 that "The 
parallax on the 3d of June being 8.65", the mean parallax will be found to be = 8.78"; 
and if the semidiameter of the Earth be supposed = 3985 English miles, the mean 
distance of the Earth from the Sun will be 93,726,900 English miles." 

Eight-tenths of a percent difference. Absolutely remarkable. 

Notes on the sources A very large number of papers on the transits of Venus 
in 1761 and 1769 appeared in the Philosophical Transactions of the Royal Soci- 
ety. Thanks to a project known as the Internet Library of Early Journals (ILEJ), 
many of these [5, 10, 11] are available at www.bodley.ox.ac.uk/ilej/. (Hint: 
sometimes the "next page" arrows at this site don't work, but adjusting the page 
number in the URL does.) Also, Halley's paper [4] can be found online, starting at 
www. dsellers. demon. co. uk/. 

One can find a number of web sites devoted to the upcoming Venus transit of 
June 8, 2004. In particular, a web site maintained by the U.S. Naval Observatory 
(http: //aa.usno. navy. mil/data/docs/Venus2004. pdf) gives precise infor- 
mation about the times of the transit predicted for various locations all over the world. 
According to this web site, the entire transit will be visible throughout most of Europe, 
Asia, and Africa. The very end of the transit will be visible in the eastern U.S. just after 
sunrise. 
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Proof Without Words: 
Equal Areas in a Partition of a Parallelogram 

I. a+b+c=d 
II. e+ f = g + h 
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